On the equivalence of Z-automata
نویسندگان
چکیده
We prove that two automata with multiplicity in Z are equivalent, i.e. define the same rational series, if and only if there is a sequence of Z-coverings, co-Z-coverings, and circulations of −1, which transforms one automaton into the other. Moreover, the construction of these transformations is effective. This is obtained by combining two results: the first one relates coverings to conjugacy of automata, and is modeled after a theorem from symbolic dynamics; the second one is an adaptation of Schützenberger’s reduction algorithm of representations in a field to representations in an Euclidean domain (and thus in Z).
منابع مشابه
Irreducibility on General Fuzzy Automata
The aim of this paper is the study of a covering of a max-mingeneral fuzzy automaton by another, admissible relations, admissiblepartitions of a max-min general fuzzy automaton,$tilde{delta}$-orthogonality of admissible partitions, irreduciblemax-min general fuzzy automata. Then we obtain the relationshipsbetween them.
متن کاملMyhill-Nerode Fuzzy Congruences Corresponding to a General Fuzzy Automata
Myhill-Nerode Theorem is regarded as a basic theorem in the theories of languages and automata and is used to prove the equivalence between automata and their languages. The significance of this theorem has stimulated researchers to develop that on different automata thus leading to optimizing computational models. In this article, we aim at developing the concept of congruence in general fuzzy...
متن کاملCloud modeling of quasi - order groups on general fuzzy automata
In this paper, first a simplified version of a general fuzzy automaton with a fixed c is defined and then a subepisode of a simplified version of a general fuzzy automaton with a constant c is defined and explained connected and strong connected them, and finally, a model of quasi-order hypergroup on general fuzzy automaton with constant c is presented and the relationships between them are rev...
متن کاملTREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS
In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...
متن کاملThe graph of equivalence classes and Isoclinism of groups
Let $G$ be a non-abelian group and let $Gamma(G)$ be the non-commuting graph of $G$. In this paper we define an equivalence relation $sim$ on the set of $V(Gamma(G))=Gsetminus Z(G)$ by taking $xsim y$ if and only if $N(x)=N(y)$, where $ N(x)={uin G | x textrm{ and } u textrm{ are adjacent in }Gamma(G)}$ is the open neighborhood of $x$ in $Gamma(G)$. We introduce a new graph determined ...
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کامل